エビングハウスの忘却曲線(えびんぐはうすのぼうきゃくきょくせん)

忘却曲線(ぼうきゃくきょくせん)

  • ドイツの心理学者、ヘルマン・エビングハウスが自ら「子音・母音・子音」から成り立つ無意味な音節(rit, pek, tas, ...etc)を記憶し、その再生率を調べ、この曲線を導いた。そのため「エビングハウスの忘却曲線」と呼ばれている。

忘却曲線とは?

  • これが忘却曲線である。

エビングハウスの忘却曲線

  • これはこのようにとらえていただくとわかりやすい。
    • 学習到達度をお金と言い換えると…
      • 一日たつと、債権の価値が購入時の40%まで下落した。
      • 1週間たつと、債権の価値が購入時の30%まで下落した。
      • 1か月たつと、債権の価値が購入時の20%まで下落した…となる。
  • すなわち、何も対策を取らないと債権の価値が目減りしてゆく=勉強したことをどんどん忘れていってしまうということである。
  • しかし、あるタイミングで「覚えなおす」といった復習を行うことで曲線が緩やかになり、その回数を増やすことで情報が「知識」として定着するようになる。
  • しかし、エビングハウスが行ったのは「無意味な音節を使っての実験」であるため、学問などの体系的なものでは、曲線がもう少し緩やかになるといわれている。

学習到達度の計算方法

  • 学習到達度(原典では節約率)の計算の仕方はこのようになっている。

節約率(学習到達度)=
節約された時間・回数 ÷ 最初に要した時間・回数

節約された時間・回数=
最初に要した時間・回数 - 覚えなおすのに要した時間・回数

  • たとえば、最初にある単語を覚えるのに10分かかったとして、20分後にもう一度覚えなおすのに4分かかったとすると、

節約された時間6分/最初に要した時間10分=0.6(60%)の節約率
となる。

※節約された時間=最初に要した時間-覚えなおすのにかかった時間

  • また、重要な理科の用語を覚えるのに、40回書き取りし、1時間後もう一度理科の用語を書き取るのに22回かかったとすると、この場合は

節約された回数18回/最初に要した回数40回=0.45(45%)の節約率
となる。

※節約された回数=最初に要した回数-覚えなおすのにかかった回数

a:1736 t:1 y:0